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A Bit Progress on Word-Based Language Model 

CHEN Yong ( ~. ~ ) ,  CHEN Guo-Ping ( ~ 1~ ~ ) 
Department of Computer Science and Information System, University of Hong Kong, China 

A~traet A good language model is essential to a postprocessing algorithm for recognition systems. In the past, researchers have pre- 
sented various language models, such as character based language models, word based language model, syntactical rules language mod- 
el, hybrid models, etc. The word N-gram model is by far an effective and efficient model, but one has to address the problem of data 
sparseness in establishing the model. Katz and Kneser et al. respectively presented effective remedies to solve this challenging prob- 
lem. In this "study, we proposed an improvement to their methods by incorporating Chinese language-specific information or Chinese 
word class information into the system. 
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1 Introduction 

Language model ( L M )  is commonly used in post 

processing algorithm of recognition system to improve 

the recognition rate C1'21 . During postprocessing, lan- 

guage model serves as a knowledge base to assist the 

recognition system to make a bet ter  decision. To 

achieve this goal, the language model should contain 

linguistic information about a language. According to 

their content ,  language models can be categorized into 

two classes, syntactical language model and statistical 

language model. Syntactical language model usually 

contains some syntactical rules that the language 

should follow. On the other  hand, the statistical lan- 

guage model is usually formulated as a probability dis- 

tribution to reflect how likely a string of words occur 

as a sentence.  Usually the statistical model is imple- 

mented as an N-gram model based on the Markov 

model theory (also called ( N-1 ) th order  Markov mod- 

e l ) .  In an N-gram language model, conditional proba- 

bilities of different  N-gram patterns are collected over  

a training data. In practice,  due to the limited memo- 

ry resource,  the value of N is usually less than or e- 

qual to 3. If we focus on characters in the language 

(In Chinese language, the word is made up of one or 

more Chinese charac te rs ) ,  we call the N-gram lan- 

guage model as character  N-gram model. If we focus 

on words of the language, we call the N-gram lan- 
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guage model as a word N-gram model. If we focus on 

word classes of the language, we call the language 

model as word class N-gram language model. Word 

N-gram language model is significantly performs bet- 

ter  than a character  N-gram language model and word 

class language model, since the word N-gram lan- 

guage model more accurately reflecs the intrinsic sta- 

tistical characteristics of the language than the other  

two. However ,  to establish the word N-gram lan- 

guage model, one has to solve the problem of data 

sparseness in the training process. It  is common that 

many word N-gram patterns would not appear in a 

huge amount of training data, even though the size of 

vocabulary is medium and the value of N is equal to 2. 

Those unseen N-gram patterns will cause zero-valued 

conditional probabilities in the language model which 

will cause problem during application of the language 

model. To solve this problem, a smoothing technique 

is needed. Generally,  there are two kinds of smooth- 

ing techniques, interpolating and backing-off. In in- 

terpolating smoothing techniques, the N-gram lan- 

guage model is combined with lower order  model,  say 

(N-1) th -g ram,  (N-2 ) th -g ram,  etc. Usually lower 

order  models have probabilities greater  than zero 

when N-gram model is zero. The combined result  will 

then be greater  than zero. In backing-off smoothing 

techniques, two techniques are involved. Firs t ,  a 

probability mass will be formed by reserving and con- 

glomerating some probability pieces from overestimat- 

ed probabilities. Second, distribute the probability 

mass over  unseen patterns.  To distributing the proba- 
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bility mass reasonably, we have to back off to the low- 

er order model. Both Katz smoothing and Kneser-Ney 

smoothing discussed in this study belong to this kind 

of backing-off technique. 

Katz solved data sparseness by backing off to (N-1) 

th-gram model and distributing probability mass ac- 

cording (N-1)-gram probability distribution upon oc- 

currence of an unseen N-gram pattern. Kneser and 

Ney distributed the probability mass according to the 

number of (N-1)-gram patterns which can stand be- 

fore the rear word of N-gram pattern to form a seen 

N-gram patterns. After studying Katz ' s  and Kneser- 

Ney's  methods, we think that we can improve their 

methods by incorporating Chinese language-specific 

linguistic information or word class bigram informa- 

tion. The language-specific linguistic information is 

one kind of special character bigram information. We 

use two kinds of information to guide the distribution 

process of probability mass. The guided distribution 

effect is better than the original methods. 

This paper is structured as follows. In the next sec- 

tion, we introduce some background knowledge in- 

volved in establishing the statistical language model. 

In the third section, we introduce smoothing tech- 

niques, including some existing ones and our im- 

proved versions of Katz smoothing and Kneser-Ney 

smoothing. In the fourth section, we present experi- 

mental results and the discussion. The fifth section is 

the conclusion of this paper. 

2 N-gram Language Model Basics 

The N-gram language model is usually formulated 

as a probability distribution p ( s ) over strings s that 

attempts to reflect how likely a string s occurs as a 

sentence. For example, there is a sentence s com- 

posed of the words wx"" wt,  we can express p ( s )  as 

p(  s ) = p(  w a ) p (  w21 wx)" 

p( w3l wa w~_)"'p( w~l wa"" w~-x) 
! 

= ~ ,p (  wil wl"'" wi-1)  

For bigram models (N = 2) ,  assuming a first order 

Markov model, we can make the approximation that 

the probability of a word depends only on the identity 

of the immediately preceding word, giving us 

t t 

p ( s )  = I I p ( w i [ w x " ' w i _ a ) ~ I I p ( w i I w i _ l )  (1) 
i = l  i=1  

To estimate conditional probability p ( w/I wi - 1 ),  

we can simply count how often the bigram w~ - 1 w~ oc- 

curs in some text and normalize. Let c ( w i  - x wi ) be 
the number of times the bigram wi- 1 w/occurs in the 

given text. Then, we can have 

C( Wi-x Wi) (2) 
p( wil Wi-1)= ~,wiC( Wi_lWi ) 

The text available for building a model is called 

training data. For bigram models, training data typi- 

cally consists of millions of words. In our experiment, 

the amount of training data is 10 000 000 Chinese 

characters. The value for p ( wi I wi-  1 ) given in Eq. 

(2) is called the maximum likelihood (ML) estima- 

tion. 
We can generalize Eq. (1) to Eq. (3) for cases of 

N > 2 ,  

I + l  
w i-1 ~ (3) p ( s )  = II p(wi[  i -n+1,  

i = l  

where ~ denotes the words w~ ..- wj and where we 

take w-,~+z through Wo to be < B o s >  and wt+~ to be 

< Eos > .  To estimate the probabilities p ( w~ I 
i - 1  w~-,~+a), the analogous equation to Eq. (2) is 

c( i x) Wi- l+ ( 4 )  
p ( w i l w i - - x , , - x ) = Z w c (  i 

• W i - n + l )  

The most widely used statistical language model is 

N-gram language model. In this paper we will focus 

on word bigram model(N = 2). 

3 Smoothing 

It is not unusual that a particular bigram pattern did 

not appear in a training data. As a result, the condi- 

tional probability of it would be zero. However, zero- 

valued bigram pattern would incur problem in applica- 

tions. For example, in character recognition postpro- 

cessing, one attempts to find a path l in a character 

lattice that maximize the posteriori probability p ( I I  

s ) = p ( s I l ) p ( l ) If p ( 1 ) is zero, then p ( 11 s) will 
p ( s )  " 

be zero and the path I will never be considered as a 

recognition result, regardless of how unambiguous the 

recognizing result is. Thus, whenever a path I caus- 
ing p ( l ) = 0 occurs during a character recognition, an 

error may occur. Assigning all strings a nonzero prob- 

ability helps prevent errors in an application. 

Smoothing techniques are used to address this prob- 
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lem. Furthermore, smoothing techniques can help us 

get more accurate statistical characteristics of a lan- 

guage. There exist many smoothing techniques. In 

this paper, we introduce the Good-Turing's method, 

the Katz'  s method and the Kneser-Ney' s method. 

The Katz' s method is based on the Good-Turing' s 

method. 

3 . 1  Good-Tur ing '  s method 

In Good-Turing's method ~s~ , the key insight sug- 

gested by Good and Turing is the introduction of the 

notion, frequency of frequency, i . e .  the number of 

bigram which occur r times. It can be denoted by the 

notation Nr. 

Good and Turing used the frequency of frequency in 

Eq. (5) to calculate a corrected count of a bigram pat- 

tern, which is usually a bit smaller than the original 

value. 

r* = ( r  + 1) N(r÷l) (5) 
Nr 

where r * is the corrected count of the bigram pat- 

tern, while r denotes the original count. When a bi- 

gram pattern is unseen, then r = 0. According to Eq. 

(5) ,  the corrected count will be greater than zero 

since No and N~ both are greater than 0. Hence, with 

this additional information, frequency of frequency, 

Good and Turing preclude zero value count. 

Please note the result r * of Eq. (5) is not the con- 

ditional probability of the bigram pattern before fur- 

ther processed by Eq. (2) .  r * is the numerator on 

the right hand side of Eq. (2). 

3 . 2  Katz smoothing 
Katz ' s  smoothing technique includes two aspects, 

producing probability mass by discounting conditional 

probabilities of overestimated bigram patterns and dis- 

tributing probability mass over conditional probabili- 

ties of underestimated bigram patterns. This smooth- 

ing technique can be formulated as Eq. (6). 

DKatz ( Wi - 1 Wi ) 

~r /C(wi -1 ) ,  if r > k  

=Jdrr (wi - lWi ) /C(wi_ l ) ,  if 0<  r ~ k  (6) 

( C t ( W i - 1 ) P M L ( W i ) ,  if r = 0  

where 

(1) r denotes the original count of any bigram pat- 

tern in a training data, 

(2) a ( w i - x )  is a normalization factor that makes 

the total number of counts in the ~ ~,CKat~ ( W~ - 1 Wi ) 

unchanged, i . e .  , ~,wiCKatz( Wi- 1Wi) = ~'wiC( w i -  1 • 

wi). Katz defined a (wi -1 )  in Eq. (7). 

1 -  ~__awi:C(Wi_lWl)>OPKatz( Wil W i - 1 )  

a (wi -1 )  = 1 - ~,%:C(wi_tw,)>oPML(Wi) (7) 

(3) dr denotes the discounting factor, which can be 

obtained by Eq. (8) ,  

r* ( k+ l )n (k÷l )  
"r '/Z 1 ( 8 )  

d'= ( k+ l )n ( k÷ l )  
l -  

n l  

where 
• r "  is the corrected count derived by Eq. (5). 

• k is a threshold, usually k is 5. 

• n(k+l) is the frequency of frequency (k + 1). 

• n l  is the frequency of frequency 1, i .  e . ,  the 

number of patterns that occur once. 

(4) drr denotes the corrected count. 

According to Eq. (6),  if a bigram pattern is seen in 

the training data and its count greater than k ,  then 

its count will not be discounted. If a bigram pattern is 

seen in the training data less than or equal to k times, 

then its count will be discounted by the factor dr. 
Now, let us take a close look at Eq. (7).  First let 

us focus on the numerator. Suppose that there is a vo- 

cabulary V = [Wl, w2, "", wn } including n words. 
For a word waE V , l ~ a ~ n ,  we assume that there 

are four bigram patterns with wa as the front word 

found in the training data. They are WaW~, WaWj, 
W, Wk and, WaWt, wi, w i, Wk, WtE V; i=/=j=/=k=/= 
l=/=a, wi, wj, wkand wt fo rmase t  W, i . e . ,  V s= 
{wi, wl, Wk, Wz}. And, W' = V - W. W contains 

words, which are never seen following the word wa in 

the training data. Let p~,  p f ,  p~ and p f  respectiv- 

ely be contributes from the original conditional proba- 

bilities p~, pj, Pk and Pt of wawi, WaWj, WaWk and 

wawt to the probability mass. Hence, we have, p/V = 

( 1 - d r ) x p i , p ~  = ( 1 - d ~ ) ×  P i , P ~  = ( 1 - d r  k)× 

Pk and p/e = (1 - dry) x Pt. According to the numera- 

tor of Eq. (7),  we have, 

1 - [ PKatz ( Wi [ Wa ) + PKatz ( Wj I Wa ) + 

PKatz ( Wk ] Wa ) + PKatz ( Wl I Wa ) ] 

= 1 - [ ( P i -  P ~ )  -b ( p j -  ~ )  + 
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(Pk - P~)  + ( P l -  pf ) ]  
= 1 - [ ( p i +  pj + pk + Pt ) -- 
( ÷ p7 + pK + p2 ) l 

= p [  + p f  + + pF 

= probability mass 

the dominator of Eq. (7) can be expanded as 

1 - ~w~:C(~_,~,>OPML( Wi-1 Wi) 

= 1 - [ Paa(wi) + PML (Wj) + pML (Wk) + p ~ (  Wt)] 

= ~"w :w ev'PML(Wu) 

As illustrated in the. above example, the numerator 

of Eq. (7) corresponds to the probability mass while 

the dominator of Eq. (7) corresponds to the sum of 

ML estimates of probabilities of all words in the set 

W.  Thus, when r = 0 ,  according to Eq. (6 ) ,  we 
have, 

Vt( Wi-1)PML ( Wi) = 
probability mass 

s u m  of  ML estimates o f  prob. o f  words in W "  
PMr (Wi)  = probability mass .  

PML ( Wi ) 
sum  of  ML estimates of  prob. o f  words in W 

Let q~ denote 

PML ( Wi ) 
sum  of  ML estimates of  prob. o f  words in V" 
We can see that in Katz 's  method, when the proba- 

bility mass and the denominator of • are fixed, the 

larger the ML estimate of the probability of wi,  the 

higher the value of a(-Wi-1)PML(Wi). In some cases, 

this is reasonable, but not in other cases. For exam- 

ple, consider the bigram pattern, "on Francisco", 

which would never occur in any English text since it is 

syntactically wrong. According to Eq. (6),  we have. 

p ( Francisco I on ) 

= a ( on ) x PML (Franc i s c ° ) /C(  on ) 

since the phrase "San Francisco" is very common in 

English text. Hence, PML ( Francisco ) will be high. 

Then p(Franc i sco[on)  will be high too. This result 

is unreasonable in English language. 

One shortcoming of Katz smoothing is only 

PML(Wi) is taken into account in distributing the 

probability mass. PML (W~) only provides information 

about back word w~ as an isolated entity. To some ex- 

tent, the probability mass is blindly distributed among 

unseen bigram patterns in Katz 's  method. The identi- 

ty of wi has much to do with its preceding word wi-  1. 

Hence, it would be helpful to take the interdependent 

information between wi-x and w~ into account in dis- 

tributing the probability mass. When the direct infor- 

mation between wi - x and w/ is unavailable ( C ( w~- 1 

w/) = 0) ,  it is natural to try to find less specific infor- 

mation between w~ - 1 and w~ to assist determining the 

value of p ( w i  I w i  - 1). 

3.3  Kneser-Ney smoothing 
It is clear that the information about the relation- 

ship between wi-1 and wi would be helpful for dis- 

tributing probability mass among unseen bigram pat- 
terns. Reinhard Kneser and Herman Ney E8] (1995) 

presented a novel scheme, which can be formulated as 

in Eq. (9) (given here for a bigram, Kneser-Ney' s 

method is also applicable to higher order N-gram mod- 

el). 

PKneser.Nev ( Wi I wi - 1) 

t C( Wi_l Wi ) - D = - - C ( w i - t )  , i f C ( w ~ - l w i ) > O ,  

I l v lC(vw~)>OI I  
a(  Wi- 1 ) ~--~w I I v l C ( v w )  >oil  ,if C( wi-1 wi)  = 0 

(9) 

a ( w i - l )  
1 - ~ ~,~:c( wi_l w,)>0 PKn- m( wil wi-  1) 

Y.w,:c(w,_,w,)= LZwllvl C(vw)>Oll 

Again, a is a normalization constant that guarantees 

the probability sums to 1. Compared with Katz 

smoothing method, Kneser and Neys smoothing uses a 

simpler discounting scheme rather than computing the 

discounts using Good-Turing smoothing technique, a 

single discount, D, is used. D= n i l ( n 1  + 2 n 2 ) , n 1 ,  

and n2 are the frequencies of frequencies of 1 and 2 

respectively. The numerator, in the case of C ( wi-1 

wi) = 0, is the number of words which can precede 

wi to form bigrams, while the denominator is the total 

number of kinds of possible bigram patterns contained 

in training data. 
According to Kneser-Ney' s method, the word 

"Francisco" only appears in rather few contexts. That 

is, "Francisco" as a back word, is able to form bigram 

patterns with few preceding words. Such as "San". 

Thus, ] [ v ] C ( v " F r a n c i s c o " ) > O t l  will be small. 
Z , , , l l v l C ( v w ) > O l l  
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Accordingly, p (Francisco [ on ) will be small. This is 

reasonable. On the contrary, the word, "Tuesday" 

may appear in many contexts. That is, it is able to 

form many different bigram patterns with different 

preceding words. Therefore, I I vl C (v " T u e s f a y " )  >0}l 
EwltvlC(vw)>011 

will be relatively high. Kneser-Ney smoothing per- 

forms better than Katz. This has been proven by 

Goodman[5](1999). Our study in this paper also af- 

firms this. 

3 .  4 Special character bigram information 
based Katz  smoothing(Scb-Katz) 

Kneser and Ney introduced a special relationship in- 

formation between w~-~ and w~ to assist the distribu- 

tion of probability mass. He find that the number of 

words preceding a given word to form various seen bi- 

gram patterns depends on the identity of the given 

word. He distributed the probability mass according to 

this property of the rear word of the N-gram pattern. 

Inspired by their success, we propose two kinds of 

useful information between wi-1 and wi to assist the 

distribution work. They have proven effective in our 

experiments and will be discussed in the current and 

next subsections. 

Unlike English, in which each word is composed of 

letters, Chinese words are made up of characters. A 

Chinese word may contain one or more characters. 

Two-character words are frequently used while words 

containing more than 5 characters rarely used. In this 

study, we only investigate words containing one to 

five characters. Every Chinese character has different 

meaning and function. Thus, the probability of one 

word followed by another word is different. Based on 

this point, researchers have established Chinese char- 

acter bigram language model before, which reflects 

how likely two Chinese characters might appear con- 

secutively. 

Motivated by the character bigram model, we sug- 

gest a variant of it, which is able to characterize how 

likely two Chinese characters at special position can 

appear consecutively. This special character bigram is 

to investigate the concurrence probability of the rear 

character of the front word and the head character of 

the back word of the bigram pattern. In other words, 

we are to investigate the concurrence probability of 

two characters, which appear at special positions in 
two consecutive words. 

We use this information together with • to decide 

how large a portion of probability mass would be as- 

signed to CKat~( Wi-x wi) when C( wi-1 w~.) = 0. Let 

p(HZwilRZw,_~) be the probability of the head char- 

acter of back word conditioning on the rear character 

of front word. Eq. (6) can be rewritten as Eq. (10). 

CKatz( W i - l  Wi)  

t 
r ,  if r > k  
d , r ,  if O< r ~ k  

= probabi l i ty  mass  [~,cp + (10) 

( 1 -  y ) p ( H Z w ,  R Z w _ ) ] ,  if r=O 

where y is a coefficient , which will be determined 

empirically. 

3.5 Word class bigram information based Katz 
smoothing (WordClass-Katz) 

Apart from the special character bigram information 

which can reflect the relationship between wi-1 and 

wi at a less specific level, we also discover that the 

word class conditional probability p ( Class ( wi ) I 
Class ( wi - 1 ) can also be used as less specific informa- 

tion between wi-1 and wi, where Class ( w i )  and 

Class ( w i - 1 )  denote the word class of wi and the 

word class of wi-1 respectively. All words falling in 

the same word class usually have similar syntactical 

attributes. Those attributes decide how likely they 

appear before or after other words belonging to differ- 

ent or same word class. Therefore, it is reasonable to 

consider the relationship between two word classes as 

an approximated relationship between wi-~ and wi. 

Finally we use knowledge about p (C lass  ( wi ) I 
Class ( wi - 1 ) and PML ( Wi ) to guide the distribution 

of probability mass. This can be formulated as Eq. 

(11). 

CKatz ( Wi - 1 Wi ) 

J r ,  if r > k  
| d , r  , if 0<  r ~ k  

-- ~l probabi l i ty  mass  [ ~'~ + ( 1 - ~'). 
[ p ( C l a s s ( w i ) l C l a s s ( w i - 1 ) ] ,  if r = 0  

(11) 

In our study, we create 91 word classes based on 

words' functions in a sentence and their parts of 

speech. First, we generally divide words in V into 46 

major classes. Those categories are actually grammat- 
ical categories according to syntactical behavior of the 
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words. Some of the 46 major classes can be divided in- 

to finer subclasses according to some important at- 

tributes. The finer the classification, the more accu- 

rate the information about p ( Class ( wi ) I 
Class(wi_a) would be. According to the same at- 

tributes, the word class verb can be divided into finer 

subclasses. 

3.6 Improved Kneser-Ney smoothing 
The performance of Kneser-Ney smoothing can also 

be improved by using the special word class bigram in- 

formation or character bigram information. The addi- 

tional information was integrated into the Kneser-Ney 

smoothing according to the formula (12) and (13) re- 

spectively. We call them WordClass-Kneser-Ney mod- 

el and Scb-Kneser-Ney model. 

PK,~e,er-Ne~( Wil Wi-l) 

t C( Wi_l i~) - D C(wi-1)  , i f C ( w i _ l w i ) > 0 ,  

= I lvlC(vw~)>011 
a(wi-a) ~wl{v lC(vw)>Ol l f l+(1- f l ) "  

p( Class( wi)l Class(wi-1) ] ,if C( w~-x wi) = 0 
(12) 

P~,~r-N~( wil wi-x) 

[ C ( - - ~ i ( : w ~ - D ,  if C( Wi-l Wi) >O, 

=J r llvlC(vw~)>oll +. (13) ] a ( wi - ~ ) [ ~----~~-~ ~ )--~--~-~ ~ (1-  fl ) " 

[ p(HZ~,IRZw, ~)] , i f  C ( W i - l W  i) = 0  

4 Exper iments  

In this section, we describe our experimental re- 

sults about performances of the following language 

models: character bigram model, Katz 's  word bigram 

model, Kneser-Ney's word model, Scb-Katz model, 

WordClass-Katz model, WordClass-Kneser-Ney model 

and Scb-Kneser-Ney model. 

In our experiments, the size of vocabulary is around 

32 000 words. These words may be constituted of one 

to five Chinese characters, / .  e . ,  the longest word 

has 5 Chinese characters. The size of word bigram 

model is about 6.5 M bytes. We also get a segmented 

and tagged training data of 1 million characters from 

an online database. We trained the word class bigram 

model p ( Class ( W i ) ] Class ( wi - 1 ) on it. 
We use a handwritten Chinese character recognition 

system to test the performance of the discussed lan- 

guage models. First we feed a sentence into the rec- 

ognizer. The recognizer produces 10 best character 

candidates for each character in the sentence. These 

character candidates will form a character candidate 

lattice with each character candidate occupying a cell. 

Based on the character candidate lattice, we produce a 

word candidate lattice by identifying all potential 

words contained in the character lattice. We apply dy- 

namic programming algorithm and character-based 

language model information to the character lattice or 

dynamic programming algorithm and word-based lan- 

guage model information to word lattice to find a best 

path through the lattice as a postprocessing result. 

The postprocessing result is usually better than the o- 

riginal recognizer's result. In Table 1, we show the 

performance difference between basic Katz smoothing 

and improved Katz smoothing; in Table 2, we show 

the performance difference between basic Kneser-Ney 

smoothing and improved Kneser-Ney smoothing. The 

larger the performance difference, the better the ef- 

fect of our improvements. 

Table 1 Effect of our improvements on Katz smoothing 

Word Class-Katz S c b - K a t 2  Kneser-Nay 
LM Lid LM 

Recognition rate 89. 1500 88.9914 89.0100 

Basic Katz LM 88.6895 88. 6895 88.6895 

Difference 0. 4605 0. 3019 0. 3205 

Table 2 Effect of our improvements on Katz smoothing 

WordClass-Kneser-Ney Scb-Kneser-Ney 

LM LM 

Recognition rate 89.20 89.10 

Basic Kneser-Ney LM 89.01 89.01 

Difference 0.19 0.09 

Our tests were conducted over a text of 100 000 

characters, about 11 000 sentence, which differ from 

any training data. The original 1-best recognition rate 

is 82. 56% while the 10-best recognition rate is 

91.66%. In Table 3 and Table 4, with character bi- 

gram model as baseline, we list, respectively, the 

performances of Katz smoothing family and Kneser- 

Ney smoothing family in terms of recognition rate. 

The character bigram LM is used as baseline. 
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Table 3 Performances of Katz smoothing based 

language models 

Character WordClass- 
Basic Katz Scb-Katz 

bigram Katz model 
model( % ) model( % ) 

model( % ) ( % ) 

Postproces- 
85.2155 88. 6895 89.1500 88.9914 

sing result 

Original rate 82. 5630 82. 5630 82. 5630 82. 5630 

Difference 2. 6525 6.1265 6. 5870 6. 4284 

Table 4 Performances of Kneser-Ney smoothing 

based language models 

Character WordClass- 
Kneser-Ney Scb-Kneser- 

bigram Kneser-Ney 
model( % ) Ney( % ) 

model( % ) ( % ) 

Postproces- 
85. 2155 89. 0100 89. 2000 89. 1000 sing result 

Original rate 82. 5630 82. 5630 82. 5630 82. 5630 

Difference 2. 6525 6. 4470 6.6370 6. 5370 

When 7 in Eq. (10) and Eq. (11) is 0.66 the im- 

proved Katz model can achieve optimal performance. 

When/3 in Eq. (12) and Eq. (13) i s 0 . 6 0 ,  the im- 

proved Kneser-Ney model can achieve optimal perfor- 
mance. 

The improvement by our suggestions is not very re- 

markable. We think the main reason is that we are 

trying to make further improvement from the results 

of other improved measurements. It is more difficult 

to make a further progress from an improved platform 

than from an original platform. Furthermore, we im- 

plemented the word classification according to a Chi- 

nese information dictionary in the subsection 3. 5. 

Currently we only have the demo version of the this 

dictionary, we are not able to do finer word classifica- 
tion. 

The recognition error rate of original system is 

100% - 82.56% = 17.43%. The recognition error 
rate of the basic Katz smoothing is 100% -88 .68% = 

13.31%. A 23. 665% lower recognition error rate is 
achieved. 

In a Microsoft technique reports(2001) [~] , Good- 

man reported a similar improvement effect by Katz 

and Kneser-Ney smoothing on an English speech 

recognition system. In their experiments, test was 

conducted on 600 utterances using a speech recogni- 

tion system, the size of their vocabulary is 58 546. 

The 100-best recognition error rate is 5.2 %. The 1- 

best recognition rate is 10.1%. The improved recog- 

nition rate is around 9.76% by Katz model and 9.58% 

by Kneser-Ney model. A 3.4 % and a 5.12 % recogni- 

tion error rate reduction are made respectively. It 

seems that our method can achieve a better result. 

However, the author stressed that all parameters in 

their system was optimized to minimize the specifica- 

tion perplexity instead of recognition error rate. Fur- 

thermore, they were using a state-of-the-art speech 

recognizer. Hence, there is little room for LM to im- 

prove. But they admitted that the perplexity is pro- 

portional to recognition rate. Usually, the improve- 

ment produced by a language model is small in terms 

of recognition rate though larger in terms of perplexi- 

ty. However, recognition rate is a more objective and 

meaningful specification. Thus, in our study, we use 

recognition rate as the metric to gauge the perfor- 

mance of the language models. 

5 Conclusion 

In this paper, we investigate the performances of 

some word bigram language models with a Chinese 

character recognition system. For word bigram lan- 

guage models, the common problem is the data 

sparseness. For backing-off smoothing technique, 

some pieces of probabilities are first spared from over- 

estimated bigrams. These probability pieces conglom- 

erate to be probability mass. Then, the probability 

mass is distributed among unseen bigrams according to 

a kind of probability distribution. In Katz ' s  distribu- 

tion scheme only probability information of w~ is 

used, but no interdependent information between cur- 

rent word and its historical word(s).  In our modified 

version of Katz smoothing scheme, a kind of special 

character bigram information and class bigram infor- 

mation is used respectively. The experimental results 

proved that the two kinds of information is helpful to 

Katz smoothing technique. 
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